n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells.
نویسندگان
چکیده
The n-type transition metal oxides (TMO) consisting of molybdenum oxide (MoO(x)) and vanadium oxide (V(2)O(x)) are used as an efficient hole extraction layer (HEL) in heterojunction ZnO/PbS quantum dot solar cells (QDSC). A 4.4% NREL-certified device based on the MoO(x) HEL is reported with Al as the back contact material, representing a more than 65% efficiency improvement compared with the case of Au contacting the PbS quantum dot (QD) layer directly. We find the acting mechanism of the hole extraction layer to be a dipole formed at the MoO(x) and PbS interface enhancing band bending to allow efficient hole extraction from the valence band of the PbS layer by MoO(x). The carrier transport to the metal anode is likely enhanced through shallow gap states in the MoO(x) layer.
منابع مشابه
Restricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films
The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملQuantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells.
The current-voltage (J-V) characteristics of ZnO/PbS quantum dot (QD) solar cells show a QD size-dependent behavior resulting from a Schottky junction that forms at the back metal electrode opposing the desirable diode formed between the ZnO and PbS QD layers. We study a QD size-dependent roll-over effect that refers to the saturation of photocurrent in forward bias and crossover effect which o...
متن کاملSILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 11 8 شماره
صفحات -
تاریخ انتشار 2011